Upper Bounds of Hilbert Coefficients and Hilbert Functions

نویسنده

  • JUAN ELIAS
چکیده

Abstract. Let (R,m) be a d-dimensional Cohen-Macaulay local ring. In this note we prove, in a very elementary way, an upper bound of the first normalized Hilbert coefficient of a mprimary ideal I ⊂ R that improves all known upper bounds unless for a finite number of cases, see Remark 1.3. We also provide new upper bounds of the Hilbert functions of I extending the known bounds for the maximal ideal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

The decay of the Walsh coefficients of smooth functions

We give upper bounds on the Walsh coefficients of functions for which the derivative of order at least one has bounded variation of fractional order. Further, we also consider the Walsh coefficients of functions in periodic and non-periodic reproducing kernel Hilbert spaces. A lower bound which shows that our results are best possible is also shown. Mathematical Subject Classification (2000): P...

متن کامل

G-frames in Hilbert Modules Over Pro-C*-‎algebras

G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...

متن کامل

ar X iv : 0 70 6 . 04 00 v 1 [ m at h . A C ] 4 J un 2 00 7 BOUNDS FOR HILBERT COEFFICIENTS

We compute the Hilbert coefficients of a graded module with pure resolution and discuss lower and upper bounds for these coefficients for arbitrary graded modules.

متن کامل

Using Residuation and Collinearity to Bound Hilbert Functions of Fat Points in the Plane

We study Hilbert functions of certain non-reduced schemes A supported at finite sets of points in P, in particular, fat point schemes. We determine upper and lower bounds for the Hilbert function of A based on being given some (but not necessarily all and possibly none) of the maximal subsets of the collinear points of the support of A, i.e., given partial information about the matroid associat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008